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Abstract

Over the past two decades, significant strides have been made in stochastic problems such as
revenue-optimal auction design and prophet inequalities, traditionally modeled with n independent
random variables to represent the values of n items. However, in many applications, this
assumption of independence often diverges from reality. Given the strong impossibility results
associated with arbitrary correlations, recent research has pivoted towards exploring these
problems under models of mild dependency.

In this work, we study the optimal auction and prophet inequalities problems within the
framework of the popular graphical model of Markov Random Fields (MRFs), a choice motivated
by its ability to capture complex dependency structures. Specifically, for the problem of selling
n items to a single buyer to maximize revenue, we show that max{SRev,BRev} is an O(∆)-
approximation to the optimal revenue for subadditive buyers, where ∆ is the maximum weighted
degree of the underlying MRF. This is a generalization as well as an exponential improvement
on the exp(O(∆))-approximation results of Cai and Oikonomou (EC 2021) for additive and
unit-demand buyers. We also obtain a similar exponential improvement for the prophet inequality
problem, which is asymptotically optimal as we show a matching upper bound.
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1 Introduction

In several stochastic optimization problems arising in economics, item-independence assumptions
are frequently used to avoid strong negative results that exist for general distributions. While such
independence assumptions are useful for theoretical guarantees, they are not necessarily realistic
in practice. In auction design, for instance, it is likely that similar goods have values which are
positively correlated. This inspires a different research direction: stochastic problems with bounded
correlation strength. Such investigation brings theoretical results closer to practice while avoiding
the hardness of arbitrary distributions. In this paper, we study how mild dependencies affect the
hardness of two classic stochastic problems: revenue maximizing auction design and the prophet
inequality problem.

Auction Design. Consider the problem of selling a set [n] of n items to a single buyer, whose
valuation function v : 2[n] → R+ is private but drawn from a known distribution. Our goal is
to design an auction/mechanism that maximizes the expected revenue. In the standard setting,
we assume that the item values v({i}) are independent for each i, and that v is additive (i.e.,
v(S) =

∑
i∈S v({i}) for all S) or unit-demand (i.e., v(S) = maxi∈S v({i}) for all S). However, even

with this independence assumption, the revenue-optimal auction is complex (i.e., non-deterministic
[Tha04; MV06], non-monotone [HR15], and intractable to compute [DDT14]). Due to this, one
line of work on this problem has focused on finding “simple” mechanisms that are approximately
optimal. First, for a unit-demand buyer, a simple mechanism that achieves a 4-approximation
of optimal revenue was found by Chawla, Malec, and Sivan [CMS10] building on the work of
Chawla, Hartline, and Kleinberg [CHK07]. The case of an additive buyer was later resolved by
the landmark work of Babaioff et al. [BILW20], who show that the greater of the revenue from
selling all items separately (SRev) and that of selling all items in a grand bundle (BRev) is a
6-approximation of the optimal revenue. Following this result, the maximum of SRev and BRev was
also shown to be a O (1) approximation for the more general class of subadditive buyer valuations
(i.e., v(S ∪ T ) ≤ v(S) + v(T )) [RW18].

However, all the above results still require item values to be independent. If we allow the
buyer’s value on the items to be arbitrarily correlated, then getting any approximation on the
optimal revenue becomes impossible for simple mechanisms [HN19]. Nevertheless, the dependent
setting is not entirely hopeless, as this hardness only applies for arbitrarily strong correlations. This
leaves open the possibility for simple mechanisms to perform well when item values only have mild
dependencies.

Prophet Inequality. Prophet inequalities are another important class of problems where item-
independence is traditionally assumed. In this problem, we are presented with n items of unknown
values drawn from known distributions. We are allowed to sequentially probe the values of the items
in a given order, but after probing each item, we must immediately decide to either take the item
and end the game, or to discard the item and proceed to the next. Our goal is to maximize the
expected value of the item we ultimately take.

If we assume item values to be drawn independently, then simple threshold algorithms can
achieve 1

2 of the expected maximum item value [Sam84; KW12]. However, if we allow the item
values to have arbitrary correlations, then there exist distributions where no algorithm can obtain
better than a 1

n fraction of the maximum [HK92; ISW20]. Again, this motivates us to examine the
problem with mild correlations to interpolate between the extremes.

Markov Random Fields. To study stochastic problems with correlations, we use Markov Random
Fields (MRFs) to model the joint distribution over item values. Such models have been successfully
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employed in various fields, ranging from statistical physics to computer vision, to model high-
dimensional distributions (see, e.g., books Koller and Friedman [KF09], Jensen and Nielsen [JN07],
Pearl [Pea09], and Edwards [Edw12]). They represent a collection of dependent random variables
as vertices in a hypergraph, where edge weights indicate dependencies among variables. For us,
MRFs are an appealing model of correlation because (1) they can capture arbitrary distributions,
and (2) they allow us to parameterize the strength of correlations through graph statistics like the
maximum weighted degree ∆. For example, when ∆ = 0, one recovers the independent-items setting,
and when ∆ → +∞, they can capture arbitrary distributions. By examining MRF correlations with
0 < ∆ <∞, we can smoothly interpolate between these two extremes.

The study of stochastic problems with MRF dependencies was initiated by Cai and Oikonomou
[CO21]. They gave an eO(∆)-approximate algorithm for the prophet inequality problem, and a simple
eO(∆)-approximation for the revenue maximization problem with a single additive or unit-demand
buyer. Since poly(∆) lower bounds on the approximation ratio can be shown for both the problems,
this leaves open whether the exponential dependence on ∆ is necessary.

1.1 Our Results and Techniques

Auction Design. In the problem of selling n items to a single additive buyer with MRF valuations,
we seek to determine the best approximation of the optimal revenue achievable with simple
mechanisms. The mechanisms we focus on are separate item pricing (SRev) and grand-bundle
pricing schemes (BRev), which together achieve constant approximation in many of the previously
mentioned item-independent settings. Additionally, Cai and Oikonomou [CO21] showed that under
MRF dependencies, max{SRev,BRev} achieves an eO(∆)-approximation of the optimal revenue.

We improve this factor exponentially to O (∆), leaving only a polynomial gap to the lower bound
of Ω

(
∆1/7

)
from Cai and Oikonomou [CO21].

Theorem 1.1. For a single additive buyer with valuations given by an MRF with maximum weighted
degree ∆, the revenue of the optimal auction is at most (44∆ + 12) · SRev + 70(∆ + 1) · BRev.

Our techniques also yield results for buyers with valuations beyond additive. For a single
unit-demand buyer, we find that SRev alone is an O (∆) approximation. Again, this improves on
the eO(∆) bound from Cai and Oikonomou [CO21].

Theorem 1.2. For a single unit-demand buyer with valuations given by an MRF with maximum
weighted degree ∆, the revenue of the optimal auction is at most (44∆ + 14) · SRev.

Finally, we generalize Theorem 1.1 to the setting of a single subadditive buyer, i.e., a buyer whose
valuation function v satisfies v(S ∪T ) ≤ v(S)+ v(T ) for all subsets S, T ⊆ [n]. This setting captures
the XOS valuations studied by Cai and Oikonomou [CO21], who show that max{SRev,BRev}
achieves

(
eO(∆) + 1√

nγ

)
-approximation. Here, γ is a factor which depends on the Glauber dynamics

of the MRF1. Our results eliminate the dependence on γ and n, improve the ∆ dependency to
O (∆), and extend beyond XOS to the larger class of subadditive valuations. We note that this
approximation ratio mirrors the O (1) factor achievable in the independent-item setting for a
subadditive buyer [RW18].

Theorem 1.3. For a single subadditive buyer with valuations given by an MRF with maximum
weighted degree ∆, the revenue of the optimal auction is at most (348∆ + 110) · BRev + 10 · SRev.

1Specifically, γ is the spectral gap of the Glauber dynamics – for more information see [CO21]
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High-level Technique. To get the above results, we adapt the approach of Babaioff et al. [BILW20]
for the independent-item setting. This involves decomposing the item set into a “core” set containing
low-value items and a “tail” set containing high-value items. To apply this method for dependent
items, we need two new key ingredients.

First, we develop a new “approximate marginal mechanism” lemma (Lemma 2.5) for correlated
items. This allows us to partition the item set [n] into a core set C and tail set T , and upper
bound the optimal revenue of selling items in [n] by the total value of C and the optimal revenue of
selling T . The crucial difference between Lemma 2.5 and a similar looking lemma in Rubinstein and
Weinberg [RW18] is that our bound uses the unconditional revenue from selling T , but the latter
lemma would instead use the (larger) revenue from selling T conditional on the valuation function
on C. For MRF valuations, this conditioning may lose a factor of eΩ(∆), so avoiding it is necessary
to get bounds which are sub-exponential in ∆ .

Second, to handle the MRF correlations in our core and tail bounds, we employ an exponential
bucketing technique. The key idea is that, although item values are dependent, many distributional
statistics on one item (e.g., expectation, variance, CDF, etc.) can only change by a factor of eO(∆)

after conditioning on any event regarding the other items. Intuitively, this allow us to guess the
“scale” of the problem up to a constant factor by guessing which of the log(eO(∆)) = O (∆) many
buckets we fall into. This bucketing is where we lose the O (∆) factor in our approximation ratios.

Prophet Inequality. For the prophet inequality problem with MRF dependencies, the prior work
of Cai and Oikonomou [CO21] gives an eO(∆)-competitive algorithm. We improve this by designing
a O (∆)-competitive algorithm, and also provide an Ω (∆) lower bound.

Theorem 1.4. For any MRF with maximum weighted degree ∆, there exists a (20∆+15)-competitive
prophet inequality algorithm. Moreover, there exists an MRF instance for which no online algorithm
is better than ∆+1

2 -competitive.

The proof of this result uses similar bucketing techniques as in the above auction design problems.
We use a single threshold algorithm where our threshold is randomly chosen from one of Θ (∆)
geometrically increasing levels (buckets). As long as the largest item value falls in to one of the
“buckets” between these levels, we obtain a constant fraction of the maximum value with probability

1
Θ(∆) . In addition, we can show that if the maximum is smaller than the smallest level or larger
than the largest level, then we only lose a constant factor of the expected maximum; in the former
case because the contribution to the expected maximum is very small and in the latter case because
the largest level is large enough that getting more than one realization above the largest level, and
thus missing out on the maximum, has a very small probability of occurring.

We also show in Section 5.3 that the popular technique of designing prophet inequalities for
independent distributions via “online contention resolution schemes” (OCRS) cannot be used to
design O (∆)-competitive algorithms for MRF dependencies. Specifically, in Theorem 1.5 we show
that any approach via OCRS loses an eΩ(∆) factor in the competitive ratio.

Theorem 1.5. For every MRF, there exists a
(

1
1+e4∆

)
-selectable OCRS. Furthermore, for each

∆ > 0, there exists an MRF for which there is no α-selectable OCRS for α ≥ 4e−∆.

1.2 Further Related Work

There is a long line of work on both revenue maximizing auction design and prophet inequalities for
independent distributions. We refer the readers to the books and surveys [Rou16; Har13; CFHOV19;
Luc17]. Below we discuss works that study these problems under correlations.
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Linear Correlations. A natural model for dependencies is that of linear correlations, where each
item value is a linear combination over a common set of independent variables. This model has
received attention for both auction design [CMS10; BDHS15] and the prophet inequality problem
[ISW20]. In particular, for the special case of the base-value model, in which v({i}) = X0 +Xi

for independent variables X0, X1, . . . , Xn, constant approximations are known for both problems.
However, it is worth noting that in contrast with MRFs, linear correlations are unable to capture
arbitrary joint distributions.

Pairwise Independence. A second model for relaxing item-independence is to only assume
pairwise independence between item values. Under this weaker notion of independence, Caragiannis
et al. [CGLW22] showed that constant factor approximations still exist for single-item prophet
inequalities and certain revenue maximization problems. Recently, Dughmi, Kalayci, and Patel
[DKP24] extended some of these results to multiple-item settings. They also observed a gap between
prophet inequalities and OCRS for pairwise-independent distributions. However, similar to linear
correlations, pairwise independence is unable to capture arbitrary joint distributions.

Arbitrary Correlations. While the problem of selling n items to one buyer with arbitrary
correlations suffers from the aforementioned impossibility results, the related problem of selling one
item to n buyers is more tractable. Even under arbitrary correlations, Ronen [Ron01] showed that
a “lookahead” auction obtains a constant fraction of the optimal revenue.

2 Model and a New Marginal Mechanism

In this section, we formally define Markov Random Fields and the Optimal Auction Design problem,
and then prove a new approximate marginal mechanism for correlated distributions, which will play
a central role in all our revenue maximization results.

2.1 Markov Random Field Model for Buyer Valuations

We begin with a formal definition of Markov Random Fields.

Definition 2.1. A Markov Random Field (MRF) consists of a tuple

F = ({Ωi}i∈[n], E, {ψi}i∈[n], {ψe}e∈E),

where

• Ω = Ω1 × · · · × Ωn is the support of the distribution.

• E ⊆ 2[n] is the edge set of a hypergraph.

• ψi : Ωi → R is a potential function on coordinate i for each i ∈ [n].

• ψe :
∏

i∈eΩi → R is a potential function on hyperedge e for each e ∈ E.

A sample from the MRF is a random vector t = (t1, . . . , tn) supported on Ω = Ω1 × · · · ×Ωn with a
probability function given by

Pr [t = s] ∝ exp

∑
i∈[n]

ψi(si) +
∑
e∈E

ψe(se)

 .
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In this definition, the ψe functions impose dependencies between the ti values. If all ψe functions
are identically 0, then t has a product distribution. Thus, we can bound the strength of dependencies
in t by the magnitude of the contributions from ψe terms. A standard way to quantify this dependency
is the maximum weighted degree of the MRF.

Definition 2.2. The maximum weighted degree ∆(F) of an MRF is given by

∆(F) = max
i∈[n]

max
s∈Ω

∣∣∣∑
e∋i

ψe(se)
∣∣∣.

When the MRF is clear from context, we will simply write ∆ instead of ∆(F).

A crucial property of the parameter ∆ is that it gives us a way to bound the change in the
probability of some event involving ti after conditioning on some event over the remaining variables
t−i. This is formally given by the following lemma from Cai and Oikonomou [CO21].

Lemma 2.3 ([CO21], Lemma 2). For an MRF sample t and index i ∈ [n], we have for any Ei ⊆ Ωi

and E−i ⊆ Ω−i,

e−4∆ ≤ Pr(ti ∈ Ei ∧ t−i ∈ E−i)

Pr(ti ∈ Ei) · Pr(t−i ∈ E−i)
≤ e4∆.

Next, given an MRF, we describe how it naturally implies a model for buyer valuations.

Definition 2.4 (Buyer Valuation Distribution D). Given an MRF and a monotone set function
g : 2Ω1∪···∪Ωn → R+ (we assume Ωi to be disjoint), the buyer valuation v : 2[n] → R+ is obtained by
first sampling a (private) type vector t ∈ Ω1 × · · · ×Ωn from the MRF and then for a set S of items,

v(S) := g({ti : i ∈ S}).

We let D denote the distribution of buyer valuation v.

Thus, v is drawn implicitly from a distribution over monotone valuation functions. We use the
notation v(i) = v({i}) for i ∈ [n].

We will focus on three special cases of buyer’s valuation:

• Additive: if v(S) =
∑

i∈S v(i) for all sets S ⊆ [n].

• Unit-demand : if v(S) = maxi∈S v(i) for all sets S ⊆ [n].

• Subadditive: if v(A ∪B) ≤ v(A) + v(B) for all sets A,B ⊆ [n].

2.2 Auction Design Model

We study the problem of designing a mechanism to sell a set [n] of n items to a single buyer. The
buyer’s valuation is given by v, where v(S) denotes the value for item set S ⊆ [n], that is sampled
from a distribution D over monotone valuation functions known to the seller.

From the classic Taxation Principle [HDS79; GO81], any single buyer mechanism can be
represented by a menu M = {(Γk, pk) : k ∈ [|M |]} of options. Each menu option (Γk, pk) consists of
a distribution Γk over subsets of [n] offered at a price pk ∈ R+. If the buyer chooses menu option k,
they pay price pk and receive an item set S sampled from Γk. We assume that, given menu M , a
buyer with valuation v always chooses the option k∗ that maximizes their expect utility, i.e.,

k∗ = argmax
k∈[|M |]

{
E

S∼Γk

[v(S)]− pk

}
.
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We will therefore directly refer to a mechanism M as a menu/list of such pairs (which implicitly
includes the pair (∅, 0)). The goal of the seller is to design a menu which maximizes the expected
revenue Ev∼D [pk∗ ].

We use the notation Rev(D) to denote the maximum possible revenue from any menu, where the
buyers valuation function is drawn from distribution D. It will also be convenient for us to use the
notation Revi(D) := maxp>0 {p · Pr [v({i}) ≥ p]} to denote the optimal revenue of selling the single
item i, and to use Val(D) = Ev∼D[v([n])] to denote the expected buyer’s valuation on all items.

Additionally, we define SRev(D) to be the optimal revenue from selling each item individually.
In other words, SRev(D) is the optimal revenue for a menu of the form {(S,

∑
i∈S pi) : S ⊆ [n]} for

some collection of prices p1, . . . , pn. Notice that if v is additive, then SRev(D) =
∑

i∈[n]Revi(D),
but this is not necessarily true otherwise. We also define BRev(D) = maxp>0 {p · Pr [v([n]) ≥ p]} to
be the maximum revenue obtainable from selling the grand bundle.

2.3 Approximate Marginal Mechanism for Subadditive Valuations

The following approximate marginal mechanism lemma for correlated distributions will be very
useful in the analysis of our mechanisms. It provides an upper bound to the optimal revenue via
the revenue and welfare of two subsets of items. We will apply it after partitioning the items into a
“core” and a “tail”.

Lemma 2.5. Suppose we have two disjoint sets of items A,B, and we are selling A ∪ B to a
single buyer with a random monotone subadditive valuation v : 2A∪B → R+ drawn from a known
distribution D. Then, the optimal revenue is

Rev(D) ≤ 2
(
Val
(
DA
)
+Rev

(
DB
))
,

where DS denotes the distribution of v restricted to a set S of items.

Proof. Consider an optimal menu M = {(Γk, pk) : k ∈ [|M |]} for A ∪B. We construct a menu

MB :=
{(

ΓB
k ,
pk
2

)
: k ∈ [|M |]

}
,

for B by restricting each allocation to B, and discounting prices by a factor of 2. Here, ΓB
k is the

distribution of S ∩B, where S ∼ Γk.
For a fixed realization of v, let k∗ = argmaxk {ES∼Γk

[v(S)]− pk} be the menu option the buyer
would choose from M and k∗B = argmaxk

(
ES∼Γk

[v(S ∩B)]− pk
2

)
be the menu option the buyer

would choose from MB, respectively. Let S
∗ ∼ Γk∗ and S∗

B ∼ Γk∗B
. Then, from the optimality of k∗

and k∗B and monotonicity of v, we have

E
S∗
[v(S∗)]− pk∗ ≥ E

S∗
B

[v(S∗
B)]− pk∗B

≥

(
E
S∗
B

[v(S∗
B ∩B)]−

pk∗B
2

)
−
pk∗B
2

≥
(
E
S∗
[v(S∗ ∩B)]− pk∗

2

)
−
pk∗B
2
.

Rearranging this inequality gives

pk∗

2
≤ E

S∗
[v(S∗)− v(S∗ ∩B)] +

pk∗B
2
.
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By the subadditivity of v and S∗ ⊆ A ∪ B, we know that v(S∗) − v(S∗ ∩ B) ≤ v(S∗ ∩ A) ≤
v(A). Hence, taking expectation over v, and using Val

(
DA
)
= E[v(A)], Rev(D) = Ev[pk∗ ], and

Rev(DB) ≥ Ev

[pk∗
B
2

]
, we have

1

2
Rev(D) ≤ Val

(
DA
)
+Rev

(
DB
)
.

Now that we have shown the approximate marginal mechanism lemma, we can prove the
following crude approximation bound for Rev(D), which will be very useful in all our results. Given
Lemma 2.5, its proof is not that difficult and for this reason it has been moved to Appendix A.1.

Lemma 2.6. For a single subadditive buyer with MRF valuations v(S) = g({ti : i ∈ S}), we have

Rev(D) ≤ 2(ρ+ 1)e4∆ ·
∑
i∈[n]

Revi(D) where ρ = max
j∈[n]
s∈Ω

g({si : i ̸= j})
maxi ̸=j g({si})

.

Notice that for subadditive buyer valuations ρ ≤ n− 1 and for unit-demand buyers ρ = 1.

3 Additive Buyer Mechanisms

For an additive buyer with MRF valuations, we assume the buyer samples a private type vector
t = (t1, . . . , tn) from an MRF. The buyer’s valuation v : 2[n] → R+ is then given by

v(S) :=
∑
i∈S

g(ti),

where we employ the notation g(ti) = g({ti}).

3.1 SRev is O(log n+∆)-approximate

We will show that SRev already gets a decent approximation to the optimal revenue.

Theorem 3.1. For selling n items to a single additive buyer with MRF valuations drawn from
distribution D, we have

Rev(D) ≤ (12 + 16∆ + 2 lnn) · SRev(D).

Proof of Theorem 3.1. For a given type vector t = (t1, . . . , tn), we first partition the set of items
into the core C and the tail T , where the tail T ⊆ [n] is

T :=
{
i ∈ [n] : g(ti) ≥ e8∆SRev(D)

}
and the core is C := [n] \ T . Intuitively, the tail represents the set of items that take exceptionally
large values compared to SRev.

Additionally, since we would like to be able to condition on the tail set, we use DA for A ⊆ [n]
to denote the conditional distribution of v on the event T = A. We also define the core and tail
components, vC and vT , of the the valuation v as

vT (S) := v(S ∩ T ) =
∑
i∈S

g(ti) · 1i∈T and vC(S) := v(S ∩ C) =
∑
i∈S

g(ti) · 1i∈C .
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We let DT denote the distribution of vT , and DT
A to denote its distribution conditional on T = A.

We similarly define DC and DC
A as the distribution of vC and the distribution of vC conditional on

T = A, respectively.
Notice that from the approximate marginal mechanism Lemma 2.5, we can bound

Rev(D) ≤
∑
A⊆[n]

Pr [T = A] · Rev(DA)

≤ 2
∑
A⊆[n]

Pr [T = A] ·
(
Val

(
DC

A

)
+Rev

(
DT

A

))
= 2Val

(
DC
)
+ 2

∑
A⊆[n]

Pr [T = A] · Rev
(
DT

A

)
. (1)

We seek to bound both the core and tail contributions in terms of SRev(D).

Core Contribution. First, we bound the core contribution.

Claim 3.2. The core contribution is

Val
(
DC
)
≤ (1 + 8∆ + ln(n)) · SRev(D).

Proof of Claim 3.2. To bound the core contribution Val
(
DC
)
, notice that

Val
(
DC
)
=
∑
i∈[n]

E [g(ti) · 1i∈C ] .

We will bound each term of this sum separately. Let r = SRev(D) and ri = Revi(D) for simplicity.
Notice that

E [g(ti) · 1i∈C ] =

∫ ∞

0
Pr [g(ti) · 1i∈C ≥ τ ] dτ ≤

∫ re8∆

0
Pr [g(ti) ≥ τ ] dτ .

Notice that since ri = supτ≥0 τ · Pr [g(ti) ≥ τ ], we have Pr [g(ti) ≥ τ ] ≤ min
{
1, riτ

}
for all τ > 0.

Thus,

E [g(ti) · 1i∈C ] ≤ ri +

∫ re8∆

ri

ri
τ
dτ = ri

(
1 + ln

(
re8∆

)
− ln(ri)

)
= ri(1 + 8∆ + ln(r/ri)).

Summing over all i gives

Val
(
DC
)
≤
∑
i∈[n]

ri(1 + 8∆ + ln(r/ri)) = r

1 + 8∆−
∑
i∈[n]

ri
r
ln(ri/r)

 ≤ r (1 + 8∆ + ln(n)) ,

where the last inequality follows by noticing that −
∑

i∈[n]
ri
r ln(ri/r) corresponds to the entropy of

the distribution that picks each item i independently with probability ri
r , which is maximized when

all terms are equal, and thus −
∑

i∈[n]
ri
r ln(ri/r) ≤ ln(n).

Tail Contribution. Next, we bound the contribution of the tail. Because the tail is small in
expectation, most of the revenue should be generated when only one item appears in the tail.
This contribution is easily bounded by SRev. When multiple items appear, we can use the coarse
bound on Rev in terms of SRev given by Lemma 2.6 and exploit that the expected size E[|T |] is
exponentially small in ∆. Formally, we prove the following claim.
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Claim 3.3. The tail contribution is∑
A⊆[n]

Pr [T = A] · Rev
(
DT

A

)
≤ 5 · SRev

(
DT
)
.

Proof. First, we split the L.H.S. into two cases:∑
A⊆[n]

Pr [T = A] Rev
(
DT

A

)
≤

∑
A⊆[n]
|A|≥2

Pr [T = A] Rev
(
DT

A

)
+
∑
i∈[n]

Pr [T = {i}] Rev
(
DT

{i}

)
.

Clearly, we have Pr [T = {i}] · Rev
(
DT

{i}

)
≤ Revi

(
DT
)
, so the latter summation is bounded

by
∑

iRev
(
DT

i

)
= SRev

(
DT
)
. Thus, we just need to focus on the contribution of the former

summation. From Lemma 2.6, we have

Rev
(
DT

A

)
≤ 2|A|e4∆SRev

(
DT

A

)
= 2|A|e4∆

∑
i∈A

Revi
(
DT

A

)
≤ 2|A|e8∆

∑
i∈A

Revi
(
DT
)

Pr [i ∈ T ]
.

Here, the last step comes from Lemma 2.3 as follows. Suppose i ∈ A, and let p be the optimal price
for single item mechanism Revi(D

T
A). We have

Revi(D
T ) ≥ p · Pr [g(ti) ≥ p]

≥ e−4∆ · p · Pr [g(ti) ≥ p | T \ {i} = A \ {i}]
= e−4∆ · p · Pr [g(ti) ≥ p | T = A] · Pr [T = A | T \ {i} = A \ {i}]

= e−4∆ · Revi(DT
A) ·

Pr [T = A]

Pr [T \ {i} = A \ {i}]
.

Now, substituting this bound back into our sum over |A| ≥ 2, we have∑
A⊆[n]
|A|≥2

Pr [T = A] · Rev
(
DT

A

)
≤ 2e4∆

∑
A⊆[n]
|A|≥2

∑
i∈A

|A| · Pr [T = A] · Revi
(
DT

A

)
≤ 2e8∆

∑
A⊆[n]
|A|≥2

∑
i∈A

|A| · Pr [T \ {i} = A \ {i}] · Revi
(
DT
)

= 2e8∆
∑
i∈[n]

Revi
(
DT
) ∑

A∋i
|A|≥2

|A| · Pr [T \ {i} = A \ {i}]

= 2e8∆
∑
i∈[n]

Revi
(
DT
)
· E
[
|T \ {i}| · 1|T\{i}|≥1

]
≤ 2e8∆

∑
i∈[n]

Revi
(
DT
)
· E [2|T \ {i}|]

≤ 4e8∆
∑
i∈[n]

Revi
(
DT
)
· E[|T |].

To bound E[|T |], notice that Revi(D) ≥ Pr [i ∈ T ] · e8∆SRev(D), since if i ∈ T , its contribution
to SRev(D) is at least the lowest value in the tail, and thus

E[|T |] =
∑
i

Pr [i ∈ T ] ≤ e−8∆
∑
i

Revi(D)

SRev(D)
= e−8∆.
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Therefore, we have ∑
A⊆[n]
|A|≥2

Pr [T = A] · Rev
(
DT

A

)
≤ 4 · SRev

(
DT
)
,

so altogether we have
∑

A⊆[n] Pr [T = A] · Rev
(
DT

A

)
≤ 5 · SRev

(
DT
)
.

Combining Claim 3.3 and Claim 3.2 with (1) yields Theorem 3.1.

3.2 max{SRev,BRev} is O(∆)-approximate

To get from O (log n+∆) approximation in Theorem 3.1 to O (∆) approximation in Theorem 1.1,
the following Lemma 3.4 refines our core contribution bound in Claim 3.2 in terms of BRev to save
the log n factor. Together with tail contribution in Claim 3.3, this gives the proof of Theorem 1.1.

Lemma 3.4. The core contribution is

Val
(
DC
)
≤ (22∆ + 1) · SRev(D) + 35 (∆ + 1) · BRev (D) .

Proof. To get a refined bound on the core contribution, we will further split up the core. Let

Cs := {i ∈ C : g(ti) ≤ r}

be the small elements of the core, and let

Cℓ := C \ Cs =
{
i ∈ C : r < g(ti) < re8∆

}
be the large elements. We define DCℓ and DCs as the restrictions of D to Cℓ and Cs, respectively.
Since Cs and Cℓ partition C, we have

Val
(
DC
)
= Val

(
DCs

)
+Val

(
DCℓ

)
. (2)

We bound each of these separately.

Claim 3.5.
Val

(
DCℓ

)
≤ 22∆ · SRev(D).

Proof. Consider the single item pricing strategy of picking a random z ∈ {0, 1, . . . , 8∆− 1}, and
selling item i for price rez. If i ∈ Cℓ, then with probability 1

8∆ , item i sells for at least a 1
e fraction

of its value. Therefore, we have

Revi(D) ≥ 1

8e∆
· E [g(ti) · 1i∈Cℓ

] .

Summing over i gives us that SRev(D) ≥ 1
8e∆Val

(
DCℓ

)
≥ 1

22∆Val
(
DCℓ

)
.

Claim 3.6.
Val

(
DCs

)
≤ SRev(D) + 35(∆ + 1) · BRev

(
DCs

)
.

Proof. Let µ := Val
(
DCs

)
= E[v(Cs)]. If µ ≤ r we are done. Hence, assume that µ > r.

Consider the following strategy for selling the grand bundle on Cs. Pick a random z ∈
{−1, 0, 1, . . . ,K} and offer the bundle at price ezµ, for a K to be chosen later. Notice that if

11



v(Cs) ∈
[
e−1µ, eKµ

]
, then this strategy obtains at least a 1

e fraction of the value of v(Cs) with
probability at least 1

K+2 . Therefore, we find

µ ≤ µ · e−1 + e(K + 2)BRev
(
DCs

)
+ E

[(
v(Cs)− eKµ

)+]
.

We just need to bound the contribution of the last term. From Lemma 7 of [CO21], we have

Var (v(Cs)) ≤ 2r2 +
(
e4∆ − 1

)
µ2. (3)

Therefore,

E
[(
v(Cs)− eKµ

)+]
=

∫ ∞

eKµ
Pr [v(Cs) ≥ τ ] dτ ≤

∫ ∞

(eK−1)µ
Pr [v(Cs)− µ ≥ τ ] dτ .

Applying Chebyshev’s inequality and bounding the variance by (3) gives

E
[(
v(Cs)− eKµ

)+] ≤
∫ ∞

(eK−1)µ

2r2 + (e4∆ − 1)µ2

τ2
dτ =

2r2 + (e4∆ − 1)µ2

(eK − 1)µ
.

Next, we set K = 4∆+ 2. Together with the fact that µ > r, we have

E
[(
v(Cs)− eKµ

)+] ≤ e4∆ + 1

e4∆+2 − 1
· µ ≤ 2µ

e2 − 1
.

Altogether with our previous bounds, we finally obtain(
1− 1

e
− 2

e2 − 1

)
µ ≤ e(4∆ + 4) · BRev

(
DCs

)
µ ≤ e(4∆ + 4)(

1− 1
e −

2
e2−1

) · BRev
(
DCs

)
≤ 35(∆ + 1) · BRev

(
DCs

)
so Val

(
DCs

)
≤ SRev(D) + 35(∆ + 1) · BRev

(
DCs

)
as desired.

Combining the last two claims with (2) completes the proof of the lemma.

4 Beyond Additive Valuations

In this section we study unit-demand and subadditive buyers.

4.1 Unit-Demand Buyer Mechanisms

Recall, in the unit demand setting, the buyer samples a private MRF type vector t, and then the
valuation for a subset S of items is

v(S) = max
i∈S

g(ti),

where we employ the notation g(ti) = g({ti}).

Proof of Theorem 1.2. Using the approximate marginal mechanism Lemma 2.5, we may again use
a core-tail decomposition. We define the tail by

T :=
{
i ∈ [n] : g(ti) ≥ e8∆+1SRev(D)

}
,
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and set the core C := [n] \ T . By applying Lemma 2.5, we have

Rev(D) = 2Val
(
DC
)
+ 2

∑
A⊆[n]

Pr [T = A] · Rev
(
DT

A

)
. (4)

Unlike in the additive setting, the value of the core is already bounded by O (∆) ·SRev(D). This
allows us to simply follow the proof structure of Theorem 3.1 without losing an extra log n term.

Claim 4.1. For a unit demand buyer,

Val
(
DC
)
≤ (22∆ + 4) · SRev(D).

Proof. Consider the following pricing strategy. Pick z ∈ {0, 1, . . . , 8∆} uniformly at random, and
sell every item for price ez ·SRev(D). If maxi∈C g(ti) ≥ SRev(D), then this strategy obtains revenue

at least v(C)
e with probability at least 1

8∆+1 . Therefore, we have

E [vt(C)] ≤ SRev(vt) + e(8∆ + 1)SRev(vt) ≤ (22∆ + 4) SRev(vt).

Claim 4.2. For a unit demand buyer,∑
A⊆[n]

Pr [T = A] · Rev
(
DT

A

)
≤ 3 · SRev

(
DT
)
.

Proof of Claim 4.2. Notice that in the unit demand setting, we no longer have SRev(D) =∑
iRevi(D), as the buyer will not purchase more than one item. To get around this, we will

show that an approximate version of this equality holds for SRev
(
DT
)
, as it is rare that more than

one item appears in the tail. Our goal will be to show

SRev
(
DT
)

≳
∑
i

Revi
(
DT
)

≳
∑
A⊆[n]

Pr [T = A] Rev
(
DT

A

)
,

where ≳ means that the inequality holds up to scaling by a constant factor.
For the latter inequality, we again use the decomposition∑
A⊆[n]

Pr [T = A] · Rev
(
DT

A

)
=
∑
i∈[n]

Pr [T = {i}] · Rev
(
DT

{i}

)
+
∑
A⊆[n]
|A|≥2

Pr [T = A] · Rev
(
DT

A

)
.

First, we clearly have Pr [T = {i}] · Rev
(
DT

{i}

)
≤ Revi

(
DT
)
, so we only need to bound the

contribution of the second summation. For this, we use Lemma 2.6 for unit-demand buyers to get∑
A⊆[n]
|A|≥2

Pr [T = A] · Rev
(
DT

A

)
≤
∑
A⊆[n]
|A|≥2

Pr [T = A] ·
∑
i∈A

4e4∆Revi
(
DT

A

)
= 4e4∆

∑
i∈[n]

∑
A∋i
|A|≥2

Pr [T = A] · Revi
(
DT

A

)
≤ 4e8∆

∑
i∈[n]

∑
A∋i
|A|≥2

Pr [T \ {i} = A \ {i}] · Revi
(
DT
)

= 4e8∆
∑
i∈[n]

Pr [|T \ {i}| ≥ 1] · Revi
(
DT
)
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≤ 4e8∆ · Pr [|T | ≥ 1] ·
∑
i∈[n]

Revi
(
DT
)
.

By construction, we have Pr [|T | ≥ 1] ≤ e−8∆−1. Thus, we get∑
A⊆[n]

Pr [T = A] · Rev
(
DT

A

)
≤ 4

e

∑
i

Revi
(
DT
)
.

Now, we just need the bound SRev
(
DT
)
≳
∑

iRevi
(
DT
)
. Consider the mechanism of placing the

optimal single-item price
pi := argmax

p≥e8∆+1SRev(D)

p · Pr [g(ti) ≥ p]

on each item i. This separate price mechanism generates revenue∑
i

pi · Pr [g(ti) ≥ pi] · Pr [i chosen | g(ti) ≥ pi] =
∑
i

Revi(D
T ) · Pr [i chosen | g(ti) ≥ pi] .

However, we have

Pr [i chosen | g(ti) ≥ pi] ≥ 1− Pr [|T | ≥ 2 | g(ti) ≥ pi] ≥ 1− e4∆ Pr [|T \ {i}| ≥ 1]

≥ 1− e−4∆−1.

Therefore, we have SRev
(
DT
)
≥
(
1− e−4∆−1

)∑
iRevi

(
DT
)
, and we obtain∑

A⊆[n]

Pr [T = A] · Rev
(
DT

A

)
≤ 4

e (1− e−8∆−1)
SRev

(
DT
)
< 3 · SRev

(
DT
)
.

Using the last two claims with (4) completes the proof of Theorem 1.2.

4.2 Subadditive Buyer Mechanisms

For the case of a subadditive buyer, since SRev(D) may be difficult to analyze directly, we will use
the proxy SRev′(D), which we define as

SRev′(D) = max
(p1,...,pn)∈Rn

+

∑
i∈[n]

E
[
pi · 1v(i)≥pi ·

∏
j ̸=i

1v(j)<pj

]
.

In other words, SRev′(D) is the maximum expected revenue from a separate pricing mechanism
where we are only allowed to collect revenue when the buyer purchases exactly one item. This
is the same proxy used by Rubinstein and Weinberg [RW18] in their analysis for a subadditive
buyer with independent items. Clearly, SRev′(D) ≤ SRev(D) and SRev′(D) ≤

∑
iRevi(D). Hence,

Theorem 1.3 is an immediate corollary of the following lemma.

Lemma 4.3. For a single subadditive buyer, we have

Rev(t) ≤ (348∆ + 110) · BRev(t) + 10 · SRev′(t).
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We will let t > 0 denote the cut-off between the tail and core, which we will define momentarily:

T := {i ∈ [n] : v(i) ≥ t}, C := [n] \ T.

For each i, let qi := Pr(i ∈ T ). We choose t such that
∑

i∈[n] qi = e−8∆−1. Notice that this gives

the bound t ≤ e8∆+2SRev′(D) by

SRev′(D) ≥
∑
i

t · Pr(v(i) ≥ t & v(j) < t, ∀j ̸= i)

=
∑
i

t · Pr(v(i) ≥ t) · Pr [v(j) < t, ∀j ̸= i | v(i) ≥ t]

≥
∑
i

t · Pr(v(i) ≥ t) ·
(
1− Pr(∃j ̸= i, v(j) ≥ t | v(i) ≥ t)

)

≥ t ·

(∑
i

qi

)1− e4∆
∑
j

qj


≥ te−8∆−2.

Lemma 4.4. We have ∑
A⊆[n]

Pr(T = A) · Rev(DT
A) ≤ 4 · SRev′(D).

Proof. Again, we separately consider when |T | = 1 and when |T | ≥ 2.∑
A⊆[n]

Pr [T = A] Rev
(
DT

A

)
=
∑
|A|≥2

Pr [T = A] Rev
(
DT

A

)
+
∑
i∈[n]

Pr [T = {i}] Rev{i}
(
DT

{i}

)
≤
∑
|A|≥2

Pr [T = A] Rev
(
DT

A

)
+ SRev′

(
DT
)
.

For the terms with |A| ≥ 2, we can use an argument similar to that of Claim 3.3 for the additive
setting. Specifically, we let p be the optimal price in the mechanism for Revi(D

T
A), and we have

Revi(D
T ) ≥ p · Pr [v(i) ≥ p]

≥ e−4∆ · p · Pr(v(i) ≥ p | T \ {i} = A \ {i})
= e−4∆ · p · Pr(v(i) ≥ p | T = A) · Pr(T = A | T \ {i} = A \ {i})

= e−4∆Revi(D
T
A) ·

Pr(T = A)

PrT \ {i} = A \ {i}
.

Thus, we see that Pr[T = A] ·Revi(DT
A) ≤ e4∆ Pr [T \ {i} = A \ {i}] ·Revi(DT ). Using this and

Lemma 2.6 we have∑
A⊆[n]
|A|≥2

Pr [T = A] · Rev
(
DT

A

)
≤ 2e4∆ ·

∑
A⊆[n]
|A|≥2

Pr [T = A] · |A| ·
∑
i∈A

Revi(D
T
A)

≤ 2e8∆ ·
∑
A⊆[n]
|A|≥2

∑
i∈A

|A| · Pr [T \ {i} = A \ {i}] · Revi(DT )

= 2e8∆ ·
∑
i∈[n]

Revi(D
T ) ·

∑
A∋i
|A|≥2

|A| · Pr [T \ {i} = A \ {i}] .
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Now, notice that for any i ∈ [n], we have∑
A∋i
|A|≥2

|A| · Pr [T \ {i} = A \ {i}] = E
[
(|T \ {i}|+ 1)1|T\{i}|≥1

]
≤ E [2 · |T \ {i}|] ≤ 2E[|T |].

Thus, we ultimately have∑
A⊆[n]
|A|≥2

Pr [T = A] · Rev
(
DT

A

)
≤ 4e8∆ · E[|T |] ·

∑
i∈[n]

Revi(D
T ) < 2

∑
i∈[n]

Revi(D
T ),

where the last inequality comes from the fact that E[|T |] ≤ e−8∆−1. Finally, we can argue that∑
iRevi

(
DT
)
≲ SRev′

(
DT
)
similarly to our argument in the unit demand setting. Letting pi be

the optimal price of i in the mechanism for Revi
(
DT
)
, we have

SRev′
(
DT
)
≥
∑
i

pi · Pr [v(i) ≥ pi] · Pr [∀j ̸= i, v(j) < pj | v(i) ≥ pi]

≥
∑
i

pi · Pr [v(i) ≥ pi] ·

1−
∑
j ̸=i

Pr [v(j) ≥ pj | v(i) ≥ pi]


≥
∑
i

pi · Pr [v(i) ≥ pi] ·
(
1− e4∆ E[|T |]

)
≥
∑
i

Revi
(
DT
)
·
(
1− e−4∆−1

)
≥ 1

2
·
∑
i

Revi
(
DT
)
.

Lemma 4.5. We have

Val(DC) ≤ (174∆ + 55) · BRev(DC) + SRev′(D).

Proof. We may assume Val(DC) ≥ SRev′(D), or else we are done. Let µ = Val(DC). We use the
following pricing strategy for the grand bundle: select z ∈ {−1, 0, 1, . . . ,K} uniformly at random,
where K = O(∆) is chosen later, and sell the grand bundle at price µez. By standard analysis, we
see that this obtains revenue at least 1

eK E
[
1v(C)≥µe−1 ·min{v(C), µeK}

]
. Additionally, we have

the bound

µ ≤ µe−1 + E
[
1v(C)≥µe−1 ·min{v(C), µeK}

]
+ E(v(C)− µeK)+, (5)

=⇒ (1− e−1)µ ≤ E
[
1v(C)≥µe−1 ·min{v(C), µeK}

]
+ E(v(C)− µeK)+. (6)

Hence, we only need to show that E(v(C)− µeK)+ ≤ c · µ for some small constant c to get our
desired result. To do this, we seek to use a concentration bound for subadditive functions over
independent items.

First, we will reduce to the independent case. Let tind ∈
∏

i∈[n](Ωi ∪ {0}) be a random vector

with independent coordinates with marginal distributions on each tindi given as follows.

Pr(tindi = ωi) = inf
ω−i∈Ω−i

Pr(ti = ωi | t−i = ω−i) ∀i ∈ [n], ωi ∈ Ωi,

Pr(tindi = 0) = 1−
∑
ω∈Ωi

Pr(tindi = ω).

Here, 0 is a dummy element that we introduce, for which we define g(0) = 0, i.e. so that
g(S ∪ {0}) = g(S) for any S ⊆ Ω.

16



Claim 4.6. For a subadditive monotone function g : Ω → R+, let g(t) := g({ti : i ∈ [n]}). Then,
for each τ > 0,

Pr(g(t) ≥ τ) ≤ e4∆ · Pr(g(tind) ≥ e−4∆τ).

Proof. Let S be a random subset of [n] in which each i is included independently with probability
e−4∆. We use the notation g(tS) = g({ti : i ∈ S}).

We claim that g(tind) stochastically dominates g(tS), in the sense that we can define a coupling
of tind with t and S such that i ∈ S only when tindi = ti. This ensures that g(t

ind) ≥ g(tS) under
the coupling, and hence the cumulative distribution function of g(tind) dominates that of g(t).

The coupling we use is as follows. For i = 1, . . . , n, we iteratively sample ti from Ωi, conditional
on our previous observation t1, . . . , ti−1 = ω1, . . . , ωi−1, and then independently decide if i ∈ S. In
the case i ∈ S, we choose tindi = ti. In the remaining case i ̸∈ S, we sample tindi with appropriate
probabilities to have the correct marginal probabilities Pr(tindi = ωi). Note that this is possible since
Lemma 1 of [CO21] gives us

Pr(tindi = ωi) ≥ e−4∆ Pr(ti = ωi | t<i = ω<i) = Pr(i ∈ S and ti = ωi | t<i = ω<i).

Using this property of tind, lets consider a uniform random map2 σ : [n] → [e4∆]. Notice that
for each k, the set σ−1(k) has the distribution of the random set S. Thus, for any τ > 0 we have

Pr(g(t) ≥ τ) ≤ Pr(∃k, g(tσ−1(k)) ≥ e−4∆τ)

≤ e4∆ Pr(g(tS) ≥ e−4∆τ)

≤ e4∆ Pr(g(tind) ≥ e−4∆τ).

Using this reduction, we can use the subadditive concentration theorem for product distributions
to get an approximate concentration result for MRFs. From Theorem 3.10 of [RW18], we have that if
a is the median of g(tind) and L is the Lipschitz constant of g, then Pr(g(tind) ≥ 3a+ τ) ≤ 4 · 2−τ/L.
Letting µ = E[g(t)], we have a ≤ 2E[g(tind)] ≤ 2µ. Combined with the concentration result above,
this tells us

Pr[g(tind) ≥ 6µ+ τ ] ≤ 4 · 2−τ/L.

Hence, for any τ0 > 0, we compute

E[(g(t)− τ0)
+] =

∫ ∞

τ0

Pr(g(t) ≥ τ)dτ

≤ e4∆
∫ ∞

τ0

·Pr(g(tind) ≥ e−4∆τ)dτ

= e8∆
∫ ∞

e−4∆τ0

Pr(g(tind) ≥ τ)dτ

≤ 4e8∆
∫ ∞

e−4∆τ0−6µ
2−τ/Ldτ

=
4L

ln 2
exp

(
8∆− ln(2) · e

−4∆τ0 − 6µ

L

)
.

Now, to apply this to our setting with v(C) = g(tC), notice that g is t-Lipschitz on the core
elements. Hence, setting τ0 = e16∆+5µ and recalling t ≤ e8∆+2 · SRev′(D) ≤ e8∆+2µ, we have

E
[
g(tC)− e16∆+5µ)+

]
≤ 4e8∆+2µ

ln 2
· exp

(
8∆− ln(2) · e

12∆+5 − 6

e8∆+2

)
2We assume that e4∆ is in integer for simplicity, as we can round up ∆ to the nearest value for which this holds to

obtain the same asymptotic bounds.
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≤ µ · 4e
2

ln 2
· exp

(
16∆− ln(2) ·

e12∆+3 − 6
e2

e8∆

)

≤ µ · 4e
2

ln 2
· exp

(
16∆− 7 ln(2) · e4∆

)
≤ µ · 4e

2

ln 2
· 1

128

≤ µ

3
.

Thus, taking K = 16∆ + 5 and substituting the above into (6), we obtain

BRev(DC) ≥ 1

e (16∆ + 5)
E
[
1v(C)≥µe−1

]
≥ µ

4e (16∆ + 5)
≥ 1

174∆ + 55
· µ.

5 Prophet Inequalities

In this section, we study the prophet inequality problem under MRF dependencies. Formally, in the
prophet inequality problem, there are n non-negative random variables (X1, . . . , Xn) whose values
are drawn from a known joint distribution D. In the i-th step for i ∈ [n], the online algorithm sees
Xi (but Xj for j > i are still unknown) and has to immediately decide to accept/reject Xi. The
game ends when the algorithm first accepts an element Xτ and the algorithm’s goal is to maximize

E[Xτ ]. We say an algorithm is α-competitive if E[maxiXi] ≤ α · E[Xτ ].

Definition 5.1. We say that a distribution D over Rn
+ has an MRF distribution if there exists an

MRF F (recall Definition 2.1) and functions gi : Ωi → R+ for each i ∈ [n] such that (X1, . . . , Xn) ∼ D,
where Xi = gi(ti) and t is sampled from F .

In Section 5.1, we will show an O(∆)-competitive algorithm for prophet inequality, exponentially
improving the results of Cai and Oikonomou [CO21]. In Section 5.2, we show that this bound is tight
(up to constant factors) for any online algorithm under MRF distributions. Finally, in Section 5.3
we show that the popular approach of designing prophet inequalities for product distributions via
“online contention resolution schemes” (OCRSs) cannot be used to prove Theorem 1.4. In particular,
it is impossible to obtain better than exp(Θ(∆))-selectable OCRS under MRF dependencies, hence
showing a strong separation between prophet inequalities and OCRS under MRF dependencies.

5.1 O(∆)-competitive Prophet Inequality

Our algorithm in the proof of Theorem 1.4 is simple: it selects a single threshold τ chosen at
random from a geometric distribution, and accepts the first random variable above the threshold.
By carefully balancing between the chance of guessing the threshold for the maximum and the
probability that more than one random variables exceed the upper-most limit of the geometric
distribution, we obtain an O(∆)-competitive algorithm.

Proof of Theorem 1.4. Let M := maxiXi. Without loss of generality, assume OPT := E[M ] = 1.
Our strategy will be as follows: First, pick a value z ∈ {−1, 0, 1, 2, . . . ,K} uniformly at random,
where K will be chosen later, and then take the first value Xi which is at least ez. Let ALG be the
random value taken by this algorithm. Now, we upper bound the maximum as

1 = E[M ] ≤ e−1 +
∑K

i=0 Pr
[
M ∈ [ei−1, ei)

]
· ei +

∑
i∈[n] E

[
1Xi≥eK ·Xi

]
,
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which implies

(1− e−1)E[M ] ≤
∑K

t=0 Pr
[
M ∈ [ei−1, ei)

]
· ei +

∑
i∈[n] E

[
1Xi≥eK ·Xi

]
.

At the same time, we can lower bound our algorithm as

E[ALG] ≥
K∑
t=0

Pr
[
M ∈ [ei−1, ei) ∧ z = i− 1

]
ei−1 +

∑
i∈[n]

Pr [z = K]E
[
1Xi≥eK1X−i<eKXi

]

=
1

K + 2

e−1
K∑
t=0

Pr
[
M ∈ [ei−1, ei)

]
· ei +

∑
i∈[n]

E
[
1Xi≥eK · 1X−i<eK ·Xi

] .

Next, we show that E
[
1Xi≥eK · 1X−i<eK ·Xi

]
is at least a constant fraction of E

[
1Xi≥eK ·Xi

]
.

Notice that

E
[
1Xi≥eK · 1X−i<eK ·Xi

]
=

∫
xi≥eK

x−i<eK

xi dPr [X = x]

=

∫
xi≥eK

xi Pr
[
X−i < eK

∣∣Xi = xi
]
· dPr [X = x]

=

∫
xi≥eK

xi
(
1− Pr

[
∃j ̸= i, Xj > eK

∣∣Xi = xi
])
dPr [Xi = xi]

≥
∫
xi≥eK

xi
(
1− e4∆ Pr

[
∃j ̸= i, Xj > eK

])
· dPr [Xi = xi]

≥
∫
xi≥eK

xi
(
1− e4∆−K

)
· dPr [Xi = xi]

=
(
1− e4∆−K

)
E
[
1Xi≥eK ·Xi

]
,

where the last inequality follows from Pr
[
∃j ̸= i, Xj > eK

]
≤ E[M ]

eK
= e−K which is due to Markov’s

inequality. Choosing K = 4∆+ 1 gives

E[ALG] ≥ 1

K + 2

e−1
K∑
t=0

Pr
[
M ∈ [ei−1, ei)

]
· ei +

(
1− e−1

) ∑
i∈[n]

E
[
1Xi≥eK ·Xi

]
≥ e−1(1− e−1)

4∆ + 3
≥ 1

20∆ + 15
.

5.2 Every algorithm is Ω (∆)-competitive

Next, we show that one cannot hope for a prophet inequality with a better than linear dependence
on ∆.

Theorem 5.2. For any ∆ > 0, there exists an MRF with maximum weighted degree ∆ such that for
the prophet inequality setting with this MRF, no online algorithm is better than ∆+1

2 -competitive.

Our hardness example consists of an MRF that is a path, i.e., the dependency graph looks like
that of Figure 1. In such MRFs, the value of Xi depends only on the value of Xi−1, for any i, and
thus, indirectly on all Xj for j < i. For such MRFs, which inherently impose an ordering on the
vertices, we present a lemma regarding Markov Random Fields that will be useful in our proof.
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Figure 1: The dependency graph of a path MRF.

Lemma 5.3. For any i ∈ [n], any probabilities {pi,ω ∈ (0, 1) : ω ∈ Ωi} such that
∑

ω∈Ωi
pi,ω = 1 and

any fixed functions {ψe : e ∈ E}, there exists a path MRF F =
(
{Ωi}i∈[n], E, {ψi}i∈[n], {ψe}e∈E

)
where E = {{i− 1, i} | i ∈ [n]}, such that if (X1, . . . , Xn) follows F , then

∀i ∈ [n], ω ∈ Ωi, x = (x1, . . . , xn) ∈ Ω1 × · · · × Ωn, Pr [Xi = ω | ∀j < i, Xj = xj ] = pi,ω.

Proof of Lemma 5.3. Notice that Pr [Xi = xi | ∀j < i, Xj = xj ] does not depend on the functions
ψ1, . . . , ψi−1. This allows us to choose the ψi sequentially in reverse order starting from i = n and
proceeding to i = 1.

We proceed by induction. Suppose for some i, we have already fixed ψi+1, . . . , ψn. For each ω ∈ Ωi,
let ψi(ω) = zω for some zω we will choose later. We also adopt the notation e<i := e∩ {1, . . . , i− 1}
and e>i := e ∩ {i+ 1, . . . , n} for e ∈ E. With this in mind, we have

Pr [Xi = ω | ∀j < i, Xj = xj ]

=

∑
ui+1,...,un

exp
(
ψi(ω) +

∑n
j=i+1 ψj(uj) +

∑
e∈E ψe(xe<i , ω, ue>i)

)
∑

ω′,ui+1,...,un
exp

(
ψi(ω′) +

∑n
j=i+1 ψj(uj) +

∑
e∈E ψe(xe<i , ω

′, ue>i)
) ,

=
λωe

zω∑
ω′ λω′ezω′

,

where λω′ =
∑

ui+1,...,un
exp

(∑n
j=i+1 ψj(uj) +

∑
e∈E ψe(xe<i , ω

′, ue>i)
)

for each ω′ ∈ Ωi. Thus,

choosing zω = log (pi,ω/λω) gives the desired result.

Given the lemma, we can prove Theorem 5.2.

Proof of Theorem 5.2. Let λ1, λ2, . . . and 0 < p < 1 be quantities to be chosen later. The MRF we
will construct is a path MRF, like the one shown in Figure 1. In other words, E = {{i− 1, i} : i ∈ [n]}.
For each positive n, we define a MRF prophet inequality problem for Ω = Ω0 × · · · × Ωn by setting

Ω0 := {1},
Ωi := {0, 1} for 1 ≤ i ≤ n,

Xi = gi(ti) := ti ·
i−1∏
j=0

λn−j for 0 ≤ i ≤ n,

ψi−1,i(si−1, si) =

{
−∆ if si−1 ̸= si

∆ if si−1 = si.
. for 1 ≤ i ≤ n.

Additionally, by Lemma 5.3, we can choose ψi(x) for i ∈ [n] (in descending order of i) so that
Pr(ti = 0 | ti−1 = 1) = p (notice that the path structure ensures that ti is independent of t0, . . . , ti−2

given ti−1).
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Let R
(1)
n be the optimal reward obtainable on the above prophet inequality setup for a given n.

Moreover, let R
(0)
n be the optimal reward obtainable if we instead define Ω0 = {0}. Notice that we

have the following recursive properties:

R(1)
n = max

{
1, λn ·

(
(1− p)R

(1)
n−1 + pR

(0)
n−1

)}
and R(0)

n = λn ·
(
qR

(1)
n−1 + (1− q)R

(0)
n−1

)
,

where q
1−q = e−4∆ · 1−p

p

We seek to choose p and λn so that the R
(1)
n = λn ·

(
(1− p)R

(1)
n−1 + pR

(0)
n−1

)
for all n. If this is

the case, then defining the vector Rn =
[
R

(1)
n , R

(0)
n

]T
∈ R2 gives Rn = λn ·

[
(1− p) p
q (1− q)

]
Rn−1.

Hence,

Rn =

n∏
i=1

λi ·
[
(1− p) p
q (1− q)

]n [
1
0

]
=

n∏
i=1

λi ·
(

q

p+ q

[
1
1

]
+

(1− p− q)n

p+ q

[
p
−q

])
.

This leads us to choose λn = q+p(1−p−q)n−1

q+p(1−p−q)n so that R
(1)
n = 1 for all n.

Now, let us consider quantities M
(1)
n and M

(0)
n , which we define to be expected value of

maxi∈[n] gi(Xi) for the prophet inequality problem above on a given n in the cases when Ω0 = {1}
and when Ω0 = {0} respectively. Our goal is to show that M

(1)
n is large for some n.

Similar to the recursion for Rn, we have the following recursive formula for Mn =
(
M

(1)
n ,M

(0)
n

)
.

Mn = λn ·
[
(1− p) p
q (1− q)

]
Mn−1 + p(1− q)n−1

[
1
0

]
,

Mn = Rn + p

n∑
k=1

(1− q)k−1 ·
∏n

i=k+1 λi∏n−k
i=1 λi

·Rn−k , (7)

which implies

M (1)
n = 1 + p

n∑
k=1

(1− q)k−1 ·
∏n

i=k+1 λi∏n−k
i=1 λi

= 1 + p

n∑
k=1

(1− q)k−1 ·
(
q + p(1− p− q)k

) (
q + p(1− p− q)n−k

)
(q + p(1− p− q)n) (q + p)

. (8)

Notice that for ∆ → +∞, we have q = 0 and λi = 1/p for all i. Thus, M
(1)
n ≈ n for small p, since

each term in the sum from (7) is 1.
For finite ∆, we seek to approximate the phenomenon that all terms in the sum contribute about

1. However, we can only do this if n is not too large. Notice that taking n→ ∞ gives

M (1)
∞ = 1 + p

∞∑
k=1

(1− q)k−1 · 1∏k
i=1 λi

= 1 + p
∞∑
k=0

(1− q)k
q + p(1− p− q)k+1

q + p

= 1 +
p

q + p

(
1 +

p(1− p− q)

1− (1−+p− q)(1− q)

)
≤ 3.

Instead, we set p = 1
2 so that q = e−4∆

1+e−4∆ . Setting n =
⌈
log1/2−q(2q)

⌉
≤ 6∆ gives

M (1)
n = 1 + 1/2 ·

n∑
k=1

(1− q)k−1 ·

(
2q + (1/2 − q)k

)(
2q + (1/2 − q)n−k

)
(2q + (1/2 − q)n) (2q + 1)

21



≥ 1 + 1/2 ·
n∑

k=1

(1− q)k−1 · (1/2 − q)n

4q(2q + 1)

≥ 1 + 1/2 ·
n∑

k=1

(1− q)k−1 · 2q (
1/2 − q)

4q(2q + 1)

≥ 1 +
1− 2q

8(1 + 2q)

n∑
k=1

(1− q)k−1

≥ 1 + (n− 1) · (1− 2q)(1− qn)

8(1 + 2q)

≥
log
(
64
q

)
8

≥ ∆+ 1

2
.

5.3 Online Contention Resolution Schemes

Here we show that one cannot hope to use OCRS to obtain a prophet inequality with a polynomial
dependence on ∆. First, we formally introduce Online Contention Resolution Schemes.

Definition 5.4 (Online Contention Resolution Scheme (OCRS) [FSZ21]). Let I be a feasibility
constraint over [n]. For an online selection setting where we are given a distribution D over [n] and
a point x ∈ PI for a polyhedral relaxation PI of I, we draw a random subset of the elements R(x)
according to D, where the marginal probability that i appears in R is xi. We call R(x) the set of
active elements. Afterwards, we observe whether each element i ∈ [n] is active (i ∈ R(x)), one by
one, and have to immediately and irrevocably decide whether to select an element or not before the
next element is revealed. An Online Contention Resolution Scheme π for P is an online algorithm
which selects a subset πx(R(x)) ⊆ R(x) such that 1πx(R(x)) ∈ P.

In this paper we are only considering a rank-1 matroid as a feasibility constraint, and thus
P = {(x1, . . . , xn) ≥ 0 |

∑
i xi ≤ 1}. Intuitively, we say that an OCRS is c-selectable if and only

if an active element i ∈ R(x) can be included in the currently selected elements S ⊆ R(x) and
maintain feasibility with probability at least c.

Definition 5.5 (c-selectability). Let c ∈ [0, 1]. An OCRS for P is c-selectable if and only if for any
x ∈ P, it returns a set S such that

Pr [i ∈ S | i ∈ R(x)] ≥ c, ∀i ∈ [n].

For each i ∈ [n], xi denotes the marginal probability that Xi is active and also that
∑

i xi ≤ 1.
A strategy will sequentially inspect each Xi and select at most one. The goal is to maximize α so
that Pr [Xi selected and Xi is active] ≥ αxi for all i ∈ [n]. Such a strategy is called α-selectable.

Proof of Theorem 1.5. We first show a
(

1
1+e4∆

)
-selectable OCRS. The algorithm is quite simple:

for each i ∈ [n], if we reach i and Xi is active, we select Xi with probability qi where

qi :=
αxi

Pr [Xi is active and X1, . . . , Xi−1 not selected]
.

If qi ≤ 1 for all i, then this is a valid α-OCRS strategy as Pr [Xi is active and selected] = αxi. To
show that qi ≤ 1, notice that

Pr [Xi active & X1, . . . , Xi−1 not selected]
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≥ e−4∆ Pr [Xi active] · Pr [X1, . . . , Xi−1 not selected]

≥ e−4∆xi ·

1−
i−1∑
j=1

αxi


≥ e−4∆xi · (1− α) = e−4∆

(
1− 1

1 + e4∆

)
xi = αxi,

where the first inequality follows from Lemma 2.3 and the third from
∑

i xi ≤ 1.

For the upper bound, let p = 1
1+e∆

, q = 1
1+e3∆

, and n+ 1 =
⌊
p+q
q

⌋
≈ e2∆. Our MRF will again

be a path with E = {{i− 1, i} : i ∈ [n]}, like in Figure 1. Let X ∈ {0, 1}n+1 be a sample from an
MRF with

Ω0 = {0, 1} , and Ωi = {0, 1} , ψi−1,i(xi−1, xi) =

{
−∆ if xi−1 ̸= xi

∆ if xi−1 = xi.
, for 1 ≤ i ≤ n.

Also, using Lemma 5.3, we can choose ψi(x) for i ∈ [n] (in descending order of i) so that
Pr [Xi = 1 |Xi−1 = 0] = p. Notice that this also ensures that Pr [Xi = 0 |Xi−1 = 1] = q. This

implies that X is a Markov chain with transition matrix P =

[
1− p q
p 1− q

]
. The stationary

distribution of this chain is 1
p+q

[
q
p

]
. Finally, we also choose ψ0(x) such that Pr [X0 = 1] = q

p+q , so

the Markov chain begins in its stationary distribution. This ensures that Pr [Xi = 1] = q
p+q for all i,

so we choose xi =
q

p+q = Pr [Xi = 1].
Now, an α-OCRS algorithm must, upon reaching Xi with Xi = 1, select Xi with probability

qα

(p+ q) Pr [Xi = 1 and X0, . . . , Xi−1 not selected]
.

Moreover, notice that this probability is independent of the history of values X0, . . . , Xi−1 due to
the Markov property, i.e. the future values Xi+1, . . . , Xn are independent of X0, . . . , Xi−1 given
Xi = 1.

To determine which values of α allow for such an algorithm, define for 0 ≤ i ≤ n the vector yi =[
y
(0)
i , y

(1)
i

]T
by y

(v)
i := Pr [Xi = v and X0, . . . , Xi not selected] . We have y0 =

1
p+q

[
q
p

]
− 1

p+q

[
qα
0

]
and yi = Pyi−1 − 1

p+q

[
qα
0

]
. By induction on yi−1, we get

yi =
1

p+ q

([
q
p

]
−

i∑
k=0

P k

[
qα
0

])

=
1

p+ q

([
q
p

]
−

i∑
k=0

(
qα

p+ q

[
q
p

]
+ (1− p− q)k

pqα

p+ q

[
1
−1

]))
.

In order for the selectability of the OCRS to be α, we must have

0 ≤ y(1)n =
1

p+ q

(
q −

n∑
k=0

(
q2α

p+ q
+ (1− p− q)k

pqα

p+ q

))

=
q

p+ q

(
1− qnα

p+ q
− 1− (1− p− q)n+1

p+ q
· pα

p+ q

)
.
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Using qn
p+q ≥ 0, we have

1

α
≥ 1− (1− p− q)n+1

p+ q
· p

p+ q
≥ 1− e−(p+q)(n+1)

2(p+ q)
≥ 1− e−1/2q

2(p+ q)
≥ 1

4(p+ q)
,

which implies α ≤ 4(p+ q) ≤ 4e−∆.
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A Omitted Proofs

A.1 Proof of Lemma 2.6

For each realization s ∈ Ω, let vs denote the buyers valuation when t = s. Let ξi be the set of s ∈ Ω
such that i is the smallest index with vs(i) = maxj vs(j). In other words, ξi is the set of realizations
of t where i is the “favorite item”.

Let Dξi denote the distribution of v given t ∈ ξi, and let rξi(s) denote the revenue obtained
from the optimal mechanism for Rev(Dξi) for the realization t = s. We have

Rev(D) ≤
∑
i∈[n]

Pr [t ∈ ξi] Rev (Dξi)

≤
∑
i∈[n]

∑
s∈ξi

Pr [t = s] · rξi(s)

≤ e4∆
∑
i∈[n]

∑
s∈ξi

Pr [ti = si] · Pr [t−i = s−i] · rξi(s)

= e4∆
∑
i∈[n]

Pr
[
t′ ∈ ξi

]
· Rev

(
D′

ξi

)
,

where the third inequality follows from Lemma 2.3, and t′ has distribution

Pr
[
t′ = s

]
= Pr [ti = si] · Pr [t−i = s−i] ,

and D′
ξi

is the distribution of vt′ given that t′ ∈ ξi. Intuitively, t
′ is a copy of t where we make t′i to

be independent of t′−i with the same marginal distribution.
Using Lemma 2.5, we find

Pr
[
t′ ∈ ξi

]
· Rev

(
D′

ξi

)
≤ 2Pr

[
t′ ∈ ξi

]
·
(
Val−i(D

′
ξi
) + Revi(D

′
ξi
)
)
,

where Val−i(D) denotes Ev∼D[v([n] \ {i})].
First, we have

Pr
[
t′ ∈ ξi

]
· Revi(D′

ξi
) ≤ Revi(D

′) = Revi(D).

Additionally, we claim
Pr
[
t′ ∈ ξi

]
·Val−i(D

′
ξi
) ≤ ρ · Revi(D).

To see this, consider the mechanism for selling i that samples t′ ∼ D′ and sets a price of maxj ̸=i vt′(j).
We can consider vt′(i) to be the buyer’s valuation on i, since it is independent. Then the item
sells with probability at least Pr(t′ ∈ ξi) and generates revenue at least E [maxj ̸=i vt′(j) | t′ ∈ ξi] ≥
1
ρVal−i(D

′
ξi
), implying the claim.

Therefore, we have

Rev(D) ≤ e4∆
∑
i∈[n]

(ρ+ 1) · Revi.

Putting everything together, we obtain

Rev(D) ≤ 2(ρ+ 1)e4∆ ·
∑
i∈[n]

Revi(D).
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